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[1] Underway and in situ observations of surface ocean pCO2, combined with satellite data,
were used to develop pCO2 regional algorithms to analyze the seasonal and interannual
variability of surface ocean pCO2 and sea-air CO2 flux for five physically and biologically
distinct regions of the eastern North American continental shelf : the South Atlantic Bight
(SAB), the Mid-Atlantic Bight (MAB), the Gulf of Maine (GoM), Nantucket Shoals and
Georges Bank (NSþGB), and the Scotian Shelf (SS). Temperature and dissolved inorganic
carbon variability are the most influential factors driving the seasonality of pCO2. Estimates
of the sea-air CO2 flux were derived from the available pCO2 data, as well as from the
pCO2 reconstructed by the algorithm. Two different gas exchange parameterizations were
used. The SS, GBþNS, MAB, and SAB regions are net sinks of atmospheric CO2 while the
GoM is a weak source. The estimates vary depending on the use of surface ocean pCO2

from the data or algorithm, as well as with the use of the two different gas exchange
parameterizations. Most of the regional estimates are in general agreement with previous
studies when the range of uncertainty and interannual variability are taken into account.
According to the algorithm, the average annual uptake of atmospheric CO2 by eastern North
American continental shelf waters is found to be between �3.4 and �5.4 Tg C yr�1 (areal
average of �0.7 to �1.0 mol CO2 m�2 yr�1) over the period 2003–2010.
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1. Introduction

[2] Coastal oceans, despite covering a small fraction of
the earth’s surface, are important in the global carbon cycle

because rates of carbon fixation, remineralization, and bur-
ial are much higher than the global average. A crucial dif-
ference between the coastal ocean and the open ocean is
the proximity of sediments to the sea surface, providing a
close coupling in space and time of the pelagic and benthic
environments. Thus, the shallow water column in coastal
regions constitutes a close link between surface sediments
and the atmosphere allowing relatively direct interactions
between both the sedimentary and atmospheric compart-
ments [Borges et al., 2005; Thomas and Borges, 2012;
Thomas et al., 2009; Thomas, 2004]. An additional charac-
teristic of the coastal seas and continental shelves is the
high temporal and spatial variability of CO2 fluxes [Borges
et al., 2005, 2008; Cai et al., 2006; Frankignoulle and
Borges, 2001; Shadwick et al., 2010, 2011]. The driving
factors often vary within the system at seasonal time scales,
and the deduction of general patterns remains difficult, typ-
ically requiring detailed case studies.

[3] The work of Borges [2005] was the first to compile a
global coastal shelf sea-air CO2 flux based on limited
observed systems and using an upscaling scheme. Borges
[2005] showed that the inclusion of the coastal ocean
increases the estimates of CO2 uptake by the global ocean
by 57% for high latitude areas, and by 15% for temperate
latitude areas, while at subtropical and tropical latitudes the
contribution from the coastal ocean increases the CO2
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emission to the atmosphere from the global ocean by 13%.
Cai et al. [2006] conducted a study of sea-air carbon
exchange in ocean margins by grouping the numerous het-
erogeneous shelves into seven distinct provinces. Their
results showed that the continental shelves are a sink of
atmospheric CO2 at mid-high latitudes (�0.33 Pg C yr�1)
and a source of CO2 at low latitudes (0.11 Pg C yr�1), with
a net uptake of �0.22 Pg C yr�1. Laruelle et al. [2010]
evaluated the exchange of CO2 between the atmosphere
and the global coastal ocean from a compilation of sea-air
CO2 fluxes scaled using a spatially explicit global typology
of continental shelves. Their computed sink of atmospheric
CO2 over the continental shelf areas (�0.21 6 0.36 Pg
C yr�1) is at the low end of the range of previous estimates
(�0.22 to �1.00 Pg C yr�1). Laruelle et al. [2010] also
concluded that the sea-air CO2 flux per surface area over
continental shelves, �0.7 6 1.2 mol CO2 m�2 yr�1, is twice
the value of the open ocean based on the most recent CO2

climatology at the time. More recently [Cai, 2011] showed
that the continental shelves are sinks of atmospheric CO2

(�0.25 Pg C yr�1, but still with large uncertainty), account-
ing for �17% of open ocean CO2 uptake (�1.5 Pg C yr�1,
Takahashi et al. [2009]). The largest uncertainty of these
scaling approaches stems from the availability of CO2 data
to describe the spatial variability, as well as to capture the
relevant scales of temporal variability.

[4] Given that relatively large amounts of carbon are
exchanged via the sea-air interface in coastal seas and conti-
nental shelves, the knowledge of the seasonal and interan-
nual variability of the sea-air CO2 flux in coastal oceans is a
very important component of the carbon budget, which
requires comprehensive regional studies. In general, the
coastal ocean is characterized by a high variability in carbon
cycling, which presents significant challenges in determining
spatial and temporal integrals of relevant quantities, such as
the sea-air CO2 flux. Therefore, innovative methods are
needed for scaling up relatively sparse field measurements,
in this case surface ocean pCO2, into the required temporal
and spatial resolutions to effectively derive regional sea-air
CO2 flux estimates. One method for obtaining such region-
ally integrated fluxes is through the use of biogeochemical
circulation models, which can be evaluated using the sparse
field measurements, and then used to compute the mean and
variability associated with these regional fluxes [Hofmann et
al., 2011]. Satellite data, because of their high temporal and
spatial resolution, provide another very promising asset to
accomplish this goal. For example, Lohrenz and Cai [2006]
conducted a satellite ocean color assessment of sea-air fluxes
of CO2 in the northern Gulf of Mexico. They used principal
component analysis and multiple regression to relate the sur-
face ocean pCO2 to SST, salinity, and chlorophyll and used
retrieval of corresponding MODIS-Aqua products to assess
the regional distributions of pCO2.

[5] In this paper, we use multiple regression analysis to
relate surface ocean pCO2 to environmental variables
(SST, surface salinity, and chlorophyll) and use the result-
ing equations with inputs from corresponding satellite
products to provide an assessment of the spatial and tempo-
ral variability of the surface ocean pCO2 and sea-air CO2

flux for the North American east coast. A brief description
of the biological/physical setting of the study region is pro-
vided in section 2. The processing of in situ and satellite

data sets and the development of regionally specific empiri-
cal pCO2 algorithms are described in section 3. The algo-
rithm evaluation and the estimates of sea-air flux from the
available pCO2 binned data and algorithm are provided in
section 4, as well as a sensitivity analysis of parameters
that influence the surface ocean pCO2 seasonal and interan-
nual variability. Finally, we provide a summary and discus-
sion of suggested future work in section 5.

2. Physical and Biological Setting

[6] The temporal and spatial variability of the surface
ocean pCO2 on continental shelves are influenced by a com-
bination of physical and biogeochemical factors, including
surface temperature-driven solubility, biological processes,
fall-to-winter vertical mixing, ocean circulation, river runoff,
and shelf-ocean exchange [Wang et al., 2013]. Here we pro-
vide a summary of the physical and biological factors that
are potentially important in shaping the pCO2 variability in
the North American east coast continental shelf.

[7] The definition of the coastal ocean is elusive, as it can
be related to bathymetry, hydrography, or distance from
shore; and some features, such as river plumes and coastal
biomass maxima, can be ephemeral. Community efforts to
standardize this definition to a fixed distance from shore,
such as Hales et al. [2008] as adopted by the Surface Ocean
CO2 Atlas (SOCAT; http://www.socat.info/), extend sea-
ward from the North American continent beyond what we
feel represents the reach of coastal processes. As a result, we
have used the outer boundaries of the regions defined by
Hofman et al. [2008, 2011] to define the extent of the coastal
ocean. The North American east coast (Figure 1) encom-
passes three large regions of diverse physical and biological
characteristics: the southeast U.S. continental shelf, also
known as the South Atlantic Bight (SAB), the northeast U.S.
continental shelf, and the Scotian Shelf (SS). Within the
northeast U.S. continental shelf there are four subregions:
the Middle Atlantic Bight (MAB), Georges Bank (GB), Nan-
tucket Shoals (NS), and the Gulf of Maine (GoM). For this
study, we combined the GB and NS regions into a single
region (GBþNS) for simplicity and because these two
regions share many similar physical and biogeochemical
attributes [Fox et al., 2005; Shearman and Lentz, 2004;
Thomas et al., 2003]. These North American continental
shelf subregions are defined in Hofmann et al. [2011] with
the GBþNS region separated from the GoM as in Hofmann
et al. [2008]. The 58 coastal subregions shown in Hofmann
et al. [2008] were developed based on a combination of ba-
thymetry, SST fronts, stratification, and biological proper-
ties. For simplicity, here we consolidate the very fine
regional domains into five major subregions described
above. However, we recognize that previous studies have
adopted other methods to identify regional domains [Hales
et al., 2008, 2012]. For example, a self-organizing mapping
method has been adopted to subregionalize the North Ameri-
can Pacific Coast [Hales et al., 2012]. The method relies on
an artificial neural network to identify biogeochemical
regions within the target study area.

[8] Our focus is on the continental shelf that we opera-
tionally define as depths less than 200 m since the depth of
the actual shelf break varies. Bathymetric variation in our
study area is large. Portions of GB and NS are only several
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meters below the sea surface, whereas in the GoM and
areas of the SS, water depths exceed 200 m. Our study area
is also at the ‘‘crossroads’’ of the north flowing Gulf Stream
and the southwest flowing slope water-Labrador current
[Rossby, 1987]. Chapman and Beardsley [1989] suggest
that glacial melt and runoff from Western Greenland gener-
ates a buoyancy-driven coastal current that flows over the
SS and GB and eventually into the MAB. This coastal cur-
rent is an important driver to the distribution of the marine
CO2 system, including surface pCO2 along its flow path

[Wang et al., 2013], i.e., the Gulf of St Laurence, the SS,
the GoM, and the MAB. There is little exchange of water
between the MAB and SAB along the narrow shelf at Cape
Hatteras. In the SAB, the Gulf Stream is close to the shelf
break and has a direct influence on the outer SAB shelf
[Signorini and McClain, 2007], readily identifiable by the
warm and salty signature shown in seasonal maps of sea
surface temperature (SST), sea surface salinity (SSS), and
chlorophyll (Chl) of Figure 2 (see section 3 for methodol-
ogy), whereas north of Cape Hatteras, the influence of the
Gulf Stream is more indirect. Here anticyclonic warm core
rings result from landward meanders of the Gulf Stream
[Joyce et al., 1992]. The rings are carried in the southwest-
ward flow of slope water where they interact with the outer
shelf from GB to Cape Hatteras, frequently entraining
phytoplankton-rich shelf water [Joyce et al., 1992]. Near
Cape Hatteras, the warm core rings may be reabsorbed into
the Gulf Stream, a process readily apparent in daily time
series animations of chlorophyll (Chl) and SST. In the
SAB, the outer shelf waters are warmer (Figure 2) in
summer and autumn than winter and spring due, in part, to
the proximity of the Gulf Stream as a result of the expan-
sion of the subtropical gyre [Signorini and McClain, 2007].

[9] The pCO2 variability in riverine-plume systems is a
result of complex biogeochemical interactions. In the Gulf
of Maine for instance, labile riverine carbon is responsible
for sustaining supersaturated pCO2 conditions in late fall,
while at other times of the year phytoplankton productivity,
most likely driven by inputs of riverine dissolved inorganic
nitrogen, is responsible for pCO2 undersaturation [Salis-
bury et al., 2008]. The North American east coast continen-
tal shelf is influenced by the discharge of several major
rivers and estuaries (Chesapeake Bay, Delaware Bay, and
Gulf of St Lawrence, for example) that contribute to com-
plex physical and biogeochemical interactions that influ-
ence the seasonal and interannual variability of the surface
ocean pCO2, an important parameter for the determination
of the sea-air CO2 flux. Vandemark et al. [2011] showed
that the observed pCO2 and CO2 flux dynamics in the Gulf
of Maine are dominated by a seasonal cycle, with a large
spring influx of CO2 and fall-to-winter efflux back to the
atmosphere. They also showed that in the western Gulf of
Maine the ocean is a net source of carbon to the atmosphere
(þ0.38 mol CO2 m�2 yr�1) over a period of 5 years, but
with a moderate interannual variation where years 2005
and 2007 represent cases of regional source (þ0.71 mol
CO2 m�2 yr�1) and sink (�0.11 mol CO2 m�2 yr�1)
anomalies, respectively. Comparison of results with the
neighboring Middle Atlantic and South Atlantic Bight shelf
systems showed that the Gulf of Maine differs by enhanced
pCO2 control factors other than temperature-driven solubil-
ity, such as biological drawdown, fall-to-winter vertical
mixing, and river runoff [Salisbury et al., 2008; Shadwick
et al., 2010].

[10] Shadwick et al. [2011] investigated the seasonal var-
iability of pCO2 in the Scotian Shelf and concluded that the
region acts as a net source of CO2 to the atmosphere on an
annual basis (1.4 mol CO2 m�2 yr�1). On a seasonal basis,
there is a reversal of the flux only when a pronounced
undersaturation of surface waters is reached for a short pe-
riod during the spring bloom. Outside of the spring bloom
period, the competing effects of temperature and biology

Figure 1. Regional domains for analysis adapted from
Hofmann et al. [2008] and Hofmann et al [2011]. The white
circles show the locations of the NDBC buoys within each
regional domain. The white star shows the location of the
Sable Island meteorological station and the white square
the location of the Carioca buoy.
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influence on surface pCO2 are nearly equal and opposite.
DeGrandpre et al. [2002], based on measurements of sur-
face ocean pCO2 during the Ocean Margins Program

[Verity et al., 2002], concluded that the MAB is a sink of
atmospheric CO2 with an annual mean of �1.0 6 0.6 Tg C
yr�1, or an area average of �1.1 6 0.7 mol CO2 m�2 yr�1.

Figure 2. Seasonal climatology maps of SST, SSS, and Chl. Upper row: SST composites from MODIS
Aqua; middle row: SSS composites from World Ocean Data 2009; bottom row: Chl composites from
MODIS Aqua. Refer to section 3 for details. The MODIS SST and Chl seasonal climatologies are based
on the period 2002–2011. The seasons are defined as Dec-Jan-Feb (DJF), Mar-Apr-May (MAM), Jun-
Jul-Aug (JJA), and Sep-Oct-Nov (SON).
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A significant portion of this atmospheric uptake is a result
of the annual cycle of heating and cooling combined with
strong winds during the winter undersaturation period.

[11] Jiang et al. [2008] showed that on an annual basis
the SAB is a relatively small net sink of atmospheric CO2

(�0.48 6 0.21 mol CO2 m�1 yr�1). Seasonally, the SAB
shifts from a sink of atmospheric CO2 in winter to a source
in summer. The annual cycle of sea surface temperature
plays an important role in controlling the seasonal variation
of pCO2. The combination of stronger wind speeds during
fall winter, when CO2 undersaturation is significant due to
lower SSTs, results in a net annual CO2 sink. Other impor-
tant factors controlling the pCO2 variability in the SAB are
the marsh export of organic carbon and dissolved inorganic
carbon (DIC) in the warm months (June-November), which
directly supports CO2 outgassing in these months via or-
ganic carbon decomposition and increase in DIC [Jiang et
al., 2013; Wang et al., 2005]. In addition, the marsh areas
in the SAB also export alkalinity, another important factor
influencing the variability of pCO2 and sea-air flux [Wang
et al., 2005; Wang and Cai, 2004].

[12] The seasonal Chl climatology from MODIS Aqua
(Figure 2) shows that the maximum Chl in the GoM, GB,
and NS occurs during spring (March-April-May, MAM).
The GB region has the highest Chl in spring, but it is main-
tained at concentrations above 2.5 mg m�3 in all seasons
due to vigorous tidal mixing. Figure 2 also shows that the
low-salinity nearshore waters along the entire east coast
coincide with regions of elevated Chl, an indication of the
influence of nutrient-rich riverine waters. On the MAB
shelf, there is a high-Chl region during winter (December-
January-February, DJF) in the nearshore and outer-shelf
waters, but the fall bloom (SON) dominates between
approximately the 40 and 60 m isobaths. The high satellite-
derived ‘‘Chl’’ in winter may be in part colored dissolved
organic matter flowing out from rivers, plus photoacclima-
tion by phytoplankton (higher Chl-a due to low surface so-
lar radiation and a well-mixed water column).

[13] The minimum surface Chl over much of the MAB
occurs during summer (JJA) when highest SST (Figure 2),
peak stratification and a pronounced subsurface Chl maxi-
mum layer occur [O’Reilly and Zetlin, 1998]. Summer
mixed-layer depths of �3.5 to 10 m are typical for MAB
shelf waters. The spring bloom (MAM) is clearly shown by
the elevated Chl concentrations in the MAB, GB, and GoM
(Figure 2). Figure 2 also shows that the SAB Chl has its
largest changes in the outer shelf, with a maximum in DJF
and lowest values in JJA under the influence of the oligo-
trophic waters of the Gulf Stream.

3. Data Sets and Methods

3.1. Processing of In Situ and Satellite Data Sets

[14] The surface ocean pCO2 data are obtained from
SOCAT, combined with additional available data from
regionally specific field experiments (see Appendix A) and
binned by month for each year (1978–2010) into 0.15� �
0.15� grid cells. The SOCAT data [Pfeil et al., 2012] holds
6.3 million quality-controlled surface ocean pCO2 from the
global oceans and coastal seas covering the period of
1968–2007. These data were put together following uni-
form format and a strict protocol that included quality con-

trol with clearly defined criteria performed by a team of
international experts.

[15] The MatLab function bin2d, developed by J. Niel-
sen and available at the Nansen Environmental and Remote
Sensing Center (NERSC) from www-2.nersc.no/�even/,
was used to bin all data sets into the study grid. First, all
the available data within 24�N to 46�N and 82�W to 56�W
were selected for binning. These included 416,261 colo-
cated surface ocean pCO2, SST, and sea surface salinity
(SSS) values from SOCAT from the period 1978–2007,
11,628 from the 2006 SAB cruise (only 2005 cruises are
included in SOCAT), and 309,665 from the GoM (2004–
2010). The binned pCO2 data were then adjusted to refer-
ence year 2004 using an atmospheric growth rate of 1.68
matm yr�1 [Le Qu�er�e et al., 2010] and assuming that the
surface ocean pCO2 is trending at the same pace as the
atmosphere. All the adjusted pCO2 data were then binned
into 12 individual calendar months, each containing the av-
erage of all data within a particular month and grid bin.
The data were then divided into regional study domains fol-
lowing the boundaries shown in Figure 1.

[16] The available pCO2 data were divided into two indi-
vidual sets, one dedicated to algorithm development (data
bins covering more than 6 months) and one dedicated to
algorithm evaluation (data bins covering less than 6
months). Surface ocean pCO2 data from underway (UW)
transects across the Scotian Shelf and pCO2 time series
from the CARIOCA buoy located at 44.296�N and
63.257�W [Shadwick et al., 2010] were also used for algo-
rithm evaluation, together with SOCAT data on the Scotian
Shelf not used for the algorithm development. Figure 3a
shows color-coded SOCAT surface ocean pCO2 cruise
tracks and Figure 3b shows corresponding coastal binned
data with associated color-coded temporal coverage in
months. The highest temporal coverage corresponds to the
most traveled routes (in orange to red), i.e., most frequent
destination ports (Boston, New York, Norfolk, Miami)
used by the Volunteering Observing Ships (VOSs). The
VOS ships according to map available at the CDIAC web
site (http://cdiac.ornl.gov/oceans/VOS_Program/) are: the
Skogafoss, A. Companion, Oleander, Falstaff, and Explorer
of the Seas. The SOCAT data set also includes transects
occupied by research vessels. Figure 3 clearly shows that
the surface ocean pCO2 data have spatial and temporal dis-
tribution gaps that may be potentially responsible for biases
in the calculation of sea-air fluxes.

[17] Monthly sea-surface salinity (SSS) climatology was
interpolated and gridded onto the 0.15� � 0.15� study do-
main grid using the World Ocean Database (WOD) 2009
station data and the method of Kriging. The Interactive
Data Language (IDL) function KRIG2D was used for this
purpose. Monthly climatologic mixed layer depth (MLD)
was derived from WOD 2005 for the entire East Coast
based on temperature profiles using 0.5�C temperature dif-
ference criterion [Hofmann et al., 2008]. The MLD data
were binned into the same 0.15� � 0.15� study domain
grid.

[18] Both data and algorithm sea-air CO2 flux estimates
were obtained using gridded (0.25� � 0.25�) winds from
the Jet Propulsion Laboratory Cross-Calibrated Multiple
Platforms (CCMP) [Atlas et al., 2011] product (ftp://
podaac-ftp.jpl.nasa.gov/allData/ccmp/L2.5/flk). Monthly
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wind climatology was derived using data from 1999 to
2008, a period approximately centered on 2004, the refer-
ence year adopted for the adjusted surface ocean pCO2

data. The climatologic and interannual CCMP monthly
winds were regridded (0.15� � 0.15�) and extrapolated
nearshore using the function ‘‘surface’’ from Generic Map-
ping Tools (GMT) [Smith and Wessel, 1990; Wessel and
Smith, 1991], which is based on an adjustable tension con-
tinuous curvature surface gridding method. High-frequency
(10 min) winds from 10 NOAA National Oceanographic
Data Center NDBC buoys (http://www.nodc.noaa.gov/
BUOY/) and hourly winds from Sable Island were used to
obtain correction coefficients to account for nonlinearities
in the gas exchange parameterization resulting from the use
of monthly climatologic winds. The method for deriving
these coefficients is described under section 3.3.

[19] All parameters used to develop the pCO2 algorithm
and to derive the sea-air CO2 flux, including all satellite

data products (SST and Chl), SSS, and the CCMP wind
speed, were also binned monthly into the same grid. The
satellite data products consisted of 9 km, level 3 mapped,
MODIS Aqua (MODISA) climatologic and interannual
monthly composites of SST and Chl obtained from the
NASA ocean color distribution archive (http://oceanco-
lor.gsfc.nasa.gov/). A validation between log-transformed
MODISA Chl retrievals versus all available in situ observa-
tions (SAB to GoM, depth<¼200 m, N¼ 404), conducted
using the SeaBASS (SeaWiFS Bio-optical Archive and
Storage System: http://seabass.gsfc.nasa.gov/) data search
and validation tools, showed good matchup agreement
(r2¼ 0.75, RMSE¼ 0.30, APD¼ 35.8%). For the algo-
rithm development, we used the available binned surface
ocean pCO2, SST, and SSS derived from the in situ data,
combined with monthly climatologic satellite Chl binned at
the same grid points as no in situ concurrent Chl measure-
ments are available. For the algorithm application, we used

Figure 3. (a) Color-coded SOCAT surface ocean pCO2 cruise tracks and (b) corresponding coastal
binned data with associated color-coded temporal coverage in months. The highest temporal coverage
corresponds to the most traveled routes (in orange to red), i.e., most frequent destination ports (Boston,
New York, Norfolk, Miami) used by the Volunteering Observing Ships. The SOCAT data set also
includes transects occupied by research vessels. The SS, GoM, GBþNS, MAB, and SAB regional boun-
daries are overlaid as black lines.
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monthly interannual (2003–2010) satellite SST and Chl,
and monthly climatologic SSS derived from WOD 2005
data.

[20] Seasonal maps were constructed by averaging the
monthly data and derived products into four 3 month com-
posites, defined as: winter (December-January-February,
DJF), spring (March-April-May, MAM), summer (June-
July-August, JJA), and autumn (September-October-No-
vember, SON).

3.2. Development of Regional pCO2 Algorithms

[21] The algorithm development is based on binned in
situ pCO2, SST, and SSS, and satellite-derived Chl monthly
climatology, as well as day of the year (Julian day). The
algorithm was developed through the multiple linear
regression (MLR) analysis based on all spatial bins contain-
ing more than six available monthly occurrences of the in
situ data (remaining data were reserved for evaluation), and
is represented as

pCO2 ¼ ½aþ bDay0 þ c T � Toð Þ þ d S � Soð Þ
þ e log10 Chlð Þ � log10 Chloð Þ� þ 1:68 year–2004ð Þ½

ð1Þ

where Day0 ¼ cos
2� Day� �ð Þ

365

� �

[22] The first terms in brackets represent the surface
ocean pCO2 corrected to the year 2004 and the last term is
a correction factor for different years to account for the rise
of surface ocean pCO2 due to the uptake of anthropogenic
CO2. The input for ‘‘Day’’ (Julian day) was normalized si-
nusoidally Day

0� �
to emphasize the seasonal cycle and to

allow January to be close to both February and December
[Friedrich and Oschlies, 2009; Lefèvre et al., 2005]. The
value of � (phase of Day

0
in days) is optimized via iteration

(ranging from 0 to 365 days) until the minimum RMSE is
obtained. To, So, Chlo are temperature, salinity, and chloro-
phyll mean values for each region. The choice of log10

(Chl) instead of Chl in our algorithm was an arbitrary
choice, and therefore limited mechanistic information can
be drawn in the empirical result.

[23] A separate analysis was conducted to evaluate the
algorithm by using surface ocean pCO2 data not used in the
development of the algorithm equations (see section 4.1).
These data consisted of bins from the monthly composites
that have less than 6 months of available pCO2 occur-
rences. Satellite-derived SST, Chl, in situ SSS monthly cli-
matology was matched with the locations and months of
the selected pCO2 bins and used as algorithm input. The
pCO2 derived from the algorithm ðpCOfit

2 Þ was matched
with the observed pCO2 pCOobs

2

� �
and a scatterplot and his-

togram of residuals were made for all combined regions to
evaluate the algorithm performance. The algorithm was
also evaluated using data from the SS [Shadwick et al.,
2010].

3.3. Calculation of the Sea-Air CO2 Flux

[24] The air minus sea pCO2 difference (DpCO2) was
calculated using monthly GLOBALVIEW [GLOBAL-
VIEW-CO2, 2011] atmospheric xCO2 from Grifton, North
Carolina, a station located approximately midway in the
study domain. The xCO2 (in mmol mol�1) was converted to

pCO2 (air) using the method of Jiang et al. [2008]. For this
conversion, we used monthly surface barometric pressure
and air temperature from NOAA NCEP-NACR CDAS-1
[Kalnay et al., 1996] and monthly climatologic SSS from
WOA09. Although several other GLOBALVIEW stations
are available along the study coastal domain, the atmos-
pheric pCO2 records are not very different to justify a more
site-specific use of the data. Regarding the use of the
atmospheric xCO2 in this study, it has been demonstrated
that there are uncertainties involved in using marine bound-
ary layer xCO2 rather than the in situ xCO2 due to the effect
of continental processes. For example, Jiang et al. [2008]
showed that the average atmospheric xCO2 on the SAB can
be almost 10 ppm higher than the measured in the open
ocean with the potential of reversing the direction of the
sea-air flux. Although this is a potential source of uncer-
tainty in the calculation of the sea-air flux, concurrent in
situ atmospheric xCO2 are only available for a limited num-
ber of coastal cruises.

[25] Climatologic (1999–2008) CCMP monthly wind
speeds at 10 m anemometer height (U10), based on a decade
of data centered on the reference year 2004, were binned
similarly and used to derive the monthly sea-air CO2 flux
for each bin and each month using the following gas trans-
fer parameterization

Flux ¼ k660
Sc

660

� ��1=2

s DpCO2 ð2Þ

in units of mol CO2 m�2 d�1. Sc is the Schmidt number
(non dimensional), s the solubility of CO2 in seawater in
mol CO2 m�3 matm�1, and DpCO2 is the air minus sea
pCO2 difference in matm. The term k660 is the quadratic gas
transfer coefficient in cm h�1 (converted to m d�1). We cal-
culated the sea-air CO2 flux using two relationships of gas
exchange with wind speed (U10), the quadratic dependence
formulation of Ho et al. [2011], for which
k660 ¼ 0:262C2U2

10, and the polynomial dependence of
Wanninkhof et al. [2009], for which k660 ¼ 3þ 0:1
U10 þ 0:064C2U2

10 þ 0:011C3U3
10, using the appropriate

nonlinearity correction coefficients C2 and C3, which are
correction factors to account for the use of monthly clima-
tologic wind speeds [Jiang et al., 2008]. These were calcu-
lated using 10 min wind speeds from 10 NDBC buoys
distributed within the SAB, MAB, GBþNS, and GoM
regions, and Sable Island 1 h wind speeds for the SS (see
locations in Figure 1), and the correction factor equations
given in Jiang et al. [2008], C2 ¼ ð1n

Pn
j U2

j Þ=U2
mean and

C3 ¼ ð1n
Pn

j U3
j Þ=U3

mean, where Uj is the high-frequency
wind speed (m/s), Umean is the monthly mean wind speed
(m s�1), and n is the number of available wind speeds in
each month. The value of C2 and C3 were obtained for each
site and month for the period 1999–2008. Monthly climato-
logic averages were calculated for each site and for each
region. The values of C2 range from 1.2 to 1.3, while those
for C3 range from 1.6 to 2.0. These values were then used
to apply corrections to the gas transfer parameterizations
when calculating the sea-air CO2 flux. The same methodol-
ogy was applied to derive data-based and algorithm-based
sea-air fluxes. We use the atmospheric convention for the
CO2 flux, i.e., a negative flux is defined as a sink of atmos-
pheric CO2 by the ocean.
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[26] The regional algorithms (Table 1 and equation (1))
were used to derive values of surface ocean pCO2 using
MODIS Aqua monthly composites of SST and Chl for
2003–2010, and monthly SSS climatology. Gap filling of
missing satellite data was done with monthly climatology
composites for each of the input parameters. The sea-air
CO2 flux was then computed using interannual monthly
CCMP winds and the gas transfer parameterization shown
in equation (2).

3.4. Monthly Climatology of DIC and Alkalinity for
pCO2 Parameter Sensitivity

[27] The data sets used to generate monthly climatolo-
gies of DIC and alkalinity (Alk) include the MODIS SST
monthly climatology, the Kriged monthly SSS climatology
derived from WOA 2009 salinity data, and surface ocean
pCO2 from the algorithm. Monthly alkalinity was derived
as a function of salinity from Cai et al. [2010] using SSS
monthly climatology. DIC was then derived from alkalin-
ity, SST, SSS, and monthly pCO2 from the algorithm using
CO2SYS (http://cdiac.ornl.gov/ftp/co2sys/CO2SYS_calc_
MATLAB/), a MatLab program to calculate the state of the
carbonate system. The input for CO2SYS consisted of alka-
linity, DIC, SST, SSS, the choice of H2CO3 and HCO�3 dis-
sociation constants (K1, K2) of ‘‘Mehrbach refit’’ [Dickson
and Millero, 1987], the choice of HSO�4 dissociation con-
stant of ‘‘Dickson’’ [Dickson, 1990], and zero concentration
for silicate and phosphate. The total borate-salinity rela-
tionship of Uppstrom [1974] was used.

[28] The monthly binned SST, SSS, DIC, and alkalinity
fields were then averaged over each region to obtain 12
monthly values for each variable and region. We refer to
these regional averages as SSTi, SSSi, DICi, and Alki,
where the superscript indicates the calendar month from 1
to 12. We also computed the annual average of each of
these four spatial averages, which we call, SST ; SSS ,
DIC , and Alk . From the regional averages, we computed
the monthly pCO2 using CO2SYS,

pCOi
2 ¼ pCO2 SSTi; SSSi; DICi; Alki

� �
; ð3Þ

and the annual average, pCO2 .
[29] The deviation of pCO2 from its annual average is

given by

�i ¼ pCOi
2 � pCO2 ð4Þ

[30] To determine the sensitivity of pCO2 to each of the
four variables, we hold three variables at their annual aver-
ages and let the fourth variable change from month to
month. For example, to determine the impact of tempera-
ture on pCO2, we computed

pCOi;SST
2 ¼ pCO2 SSTi; SSS; DIC ; AlkÞ

�
ð5Þ

[31] In an analogous way, we computed pCO2
i,SSS,

pCO2
i,DIC, and pCO2

i,Alk, which describe the respective
influences of SSS, DIC, and Alk on pCO2. We also com-
puted the deviation of pCO2 from its annual average due to
each of the four variables. For example, the deviation of
pCO2 from its annual average due to temperature is
�i;SST ¼ pCOi;SST

2 � pCO2 . Similarly, �i,SSS, �i,DIC, and
�i,Alk, describe the deviations of pCO2 from its annual aver-
age due, respectively, to SSS, DIC, and Alk. The results of
this analysis will be discussed in section 4.3.

4. Results and Discussion

[32] Regional algorithms were developed with distinct
coefficients derived for each of the five regions (Table 1)
and then used to derive seasonal and interannual surface
ocean pCO2 and sea-air CO2 fluxes (Tables 2 and 3).

4.1. Performance of Regional Algorithms

[33] In this section, we provide an assessment of the sta-
tistical importance of each proxy parameter used in the
algorithm (Figure 4), regional matchups of algorithm ver-
sus data and seasonal pCO2 plots based on monthly aver-
ages derived from data and algorithm (Figure 5), algorithm
versus data matchups using pCO2 observations not used in
the algorithm development (Figure 6), a regional matchup
analysis for the Scotian Shelf (SS) using a combination of
UW pCO2 data from Dalhousie University and a few from
SOCAT (Figure 7), and time series of algorithm pCO2 for
seven distinct subregions of the SS (concurrent data points)
following a more recent work of Thomas et al. [2012] (Fig-
ure 8). Finally, a high-frequency algorithm validation was
performed against surface pCO2 observations from the
CARIOCA buoy on the SS using concurrent hourly obser-
vations of SST, SSS, and Chl (Figure 9).

Table 1. Coefficients and Statistical Data for pCO2 Algorithm (Equation (1))a

Means and Coefficients SAB MAB GBþNS GoM SS

To (�C) 23.21 15.27 11.27 10.29 7.34
So (psu) 35.38 31.64 32.19 31.41 30.58
� (days) 123 218 359 343 27
Chlo (mg m�3) 1.09 1.54 1.62 2.94 1.24
a (matm) 378.69 61.76 360.07 6 1.40 370.66 6 1.84 373.06 6 1.38 351.43 6 0.90
b (matm) 24.00 6 2.05 7.03 6 4.82 37.05 6 2.63 39.43 6 1.68 69.31 6 2.39
c (matm �C�1) 12.23 6 0.36 5.20 6 0.47 6.88 6 0.40 1.65 6 0.24 8.77 6 0.26
d (matm psu�1) �22.49 6 1.71 1.11 6 0.61 �10.95 6 2.33 �1.34 6 0.83 1.44 6 0.86
e (matm/log10(Chl)) 30.25 6 5.87 �14.99 6 5.51 10.05 6 7.67 �20.65 6 3.83 �100.32 6 4.66
r2 0.82 0.55 0.60 0.42 0.74
RMSE (matm) 26.7 36.9 32.2 34.6 22.4
N 356 997 356 847 684

aThe multiple regression coefficients and their corresponding standard errors were obtained using the MatLab function ‘‘regstats’’ with t statistics.
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[34] Figure 4 shows the statistical (goodness-of-fit) per-
formance resulting from the incremental addition of proxy
parameters for each of the five regions. The statistical per-
formance is shown as a goodness-of-fit diagram with nor-
malized RMSE on the x axis, and (1 – r2) on the y axis.
Consequently, a perfect fit would lie at the origin of this
diagram (0, 0). The diagram shows that the variable Day0

by itself provides (1� r2) values less than 0.6 for all
regions. Incremental improvements of both normalized
RMSE and (1 – r2) are different for each region. Extreme
examples of statistical improvement are the addition of sa-
linity for the SAB and log10(Chl) for the SS.

[35] Figure 5 shows scatterplots of algorithm-derived
versus observed surface ocean pCO2 and associated sea-
sonal plots of regionally averaged pCO2. As shown in Ta-
ble 1, there is a statistical range for the coefficients derived
for each region using equation (1). The r2 is lowest for the
GoM (0.42) and highest for the SAB (0.82). The quality of
the statistical fit depends on a combination of factors,
including data coverage and how well the proxy variables

represent the surface ocean pCO2 variability in space and
time within each region.

[36] The regional algorithms were then applied using
binned inputs (SST, SSS, and Chl) matching the month and
location of the observed surface ocean pCO2 not used for
the algorithm development, and then compared with the
corresponding observed pCO2. The results are shown in
Figures 6a and 6b. The observed versus algorithm correla-
tion coefficient (color-coded scatterplot in Figure 6a with
summary of statistics in the legend) range from 0.27 (r2)
for the GoM with a RMSE¼ 25 matm to 0.78 for the SAB
with a RMSE¼ 21 matm. The histogram of residuals (Fig-
ure 6b) shows that 86% of the residuals are less than the
observed pCO2 standard deviation (6�), while 40% of
residuals are within less than �/3 (616 matm).

[37] Data from SOCAT on the SS, and Dalhousie Uni-
versity UW transects [Shadwick et al., 2010] covering the
period of 2004–2008, were averaged within seven 2� � 2�

boxes on the SS (Figure 7a) and compared with area-
averaged algorithm predictions within the same boxes. The

Table 3. Sea-Air CO2 Flux Derived From the Regional Algorithms for 2003–2010a

Year SAB MAB GoM GBþNS SS Sum

2003 �0.78/�0.90 �2.18/�2.43 þ0.002/þ0.009 �1.72/�1.20 �0.33/�0.55 �5.07
2004 �0.75/�0.88 �2.08/�2.31 þ0.107/þ0.166 �1.72/�1.20 �0.27/�0.39 �4.61
2005 �0.95/�1.12 �1.92/�2.13 þ0.068/þ0.108 �1.49/�1.04 þ0.18/þ0.15 �4.03
2006 �0.74/�0.88 �1.56/�1.73 �0.052/�0.074 �1.05/�0.73 �0.01/�0.02 �3.43
2007 �0.43/�0.51 �1.76/�1.95 �0.129/�0.191 �1.71/�1.20 �1.01/�1.55 �5.40
2008 �0.78/�0.93 �1.72/�1.91 �0.045/�0.062 �1.21/�0.85 �0.55/�0.77 �4.52
2009 �0.66/�0.76 �1.90/�2.11 �0.024/�0.028 �1.32/�0.92 �0.72/�1.14 �4.96
2010 �0.91/�1.08 �2.16/�2.41 þ0.079/þ0.126 �1.21/�0.85 �0.18/�0.40 �4.62
Mean �0.89 6 0.18 �2.12 6 0.24 þ0.007 6 0.112 �1.00 6 0.18 �0.58 6 0.52 �4.58

aThe flux is given in two different units for each year (mol CO2 m�2 yr�1/Tg C yr�1), and in Tg C yr�1 for the overall 8 year mean and whole coast
sum. The flux was calculated using the gas transfer equation of Ho et al. [2011]. Negative sign represents ocean uptake.

Table 2. Sea-Air CO2 Flux for Reference Year 2004 From Binned Data, Algorithm for Year 2004, and Previous Studies (Literature)a

Data (mol CO2 m�2 yr�1/
Tg C yr�1)

Algorithm (mol CO2 m�2 yr�1/
Tg C yr�1)

Literature (mol CO2 m�2

Region Area (1010 m2) k1
660 k2

660 k1
660 k2

660 yr�1/Tg C yr�1)

SS 12.82 �1.10 6 0.25 �1.21 6 0.27 �0.39 6 0.34 �0.42 6 0.36 þ1.42 6 0.28b

�1.69 6 0.39 �1.87 6 0.42 �0.56 6 0.50 �0.60 6 0.53 þ2.19 6 0.43
GoM 12.77 þ0.11 6 0.21 þ0.04 6 0.22 þ0.01 6 0.08 þ0.01 6 0.08 þ0.38 6 0.26c

þ0.17 6 0.32 þ0.06 6 0.34 þ0.02 6 0.12 þ0.02 6 0.12 þ0.58 6 0.40
GBþNS 5.83 �0.65 6 0.20 �0.71 6 0.22 �1.27 6 0.23 �1.37 6 0.24

�0.46 6 0.14 �0.50 6 0.15 �0.79 6 0.16 �0.86 6 0.16
MAB 9.31 �0.95 6 0.24 �1.07 6 0.27 �1.58 6 0.19 �1.78 6 0.19 �1.1 6 0.7

�1.06 6 0.27 �1.12 6 0.30 �1.63 6 0.21 �1.83 6 0.22 �1.0 6 0.6d

SAB 10.20 �0.79 6 0.26 �0.68 6 0.24 �0.61 6 0.17 �0.67 6 0.16 �0.48 6 0.21e

�0.97 6 0.31 �0.83 6 0.29 �0.67 6 0.20 �0.74 6 0.20 �0.59 6 0.26
Total 50.63 �4.01 6 0.30 �4.26 6 0.31 �3.63 6 0.24 �4.01 6 0.25

aUncertainties Eð Þ for the estimates from the data were obtained as E ¼ STD=�N , where STD is the standard deviation and N the number of data points.
Uncertainties for the sea-air CO2 flux estimates from the algorithm were based on the standard deviation of all monthly estimates for the period 2003–
2010. Both specific (mol CO2 m�2 yr�1) and total (Tg C yr�1) sea-air fluxes are shown for each region and total for the whole coast. Two gas transfer
coefficients were used, the polynomial equation of Wanninkhof et al. [2009] k1

660

� �
and the quadratic dependence version of Ho et al. [2011] k2

660

� �
adjusted for steady winds using the nonlinearity coefficients C2 and C3. Negative sign represents ocean uptake.

bShadwick et al. [2011].
cVandemark et al. [2011] is 5 year mean (2004–2208) but ranging from þ0.71 (2005) to �0.11 (2007) mol m�2 yr�1.
dDeGrandpre et al. [2002].
eJiang et al. [2008]. Values for footnote e, c, and b were converted from specific to total flux, or mol CO2 m�2 yr�1 to Tg C yr�1 (�12� area�10�12).
k1

660 ¼ 3þ 0:1U10 þ 0:064C2U2
10 þ 0:011C3U3

10 and k2
660 ¼ 0:262C2U2

10.
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scatterplot of observed versus algorithm pCO2 for the 37
resulting averages is shown in Figure 7b. The agreement
between data and algorithm predictions is quite reasonable
with r2¼ 0.79 and RMSE¼26.2 matm. The time series of
algorithm pCO2 was obtained using SST and Chl from
MODIS Aqua monthly composites and WOA09-derived
SSS climatology. The algorithm time series for all seven
boxes are shown in Figures 8a and 8b with the SOCAT
(red circles) and UW (blue circles) values superposed for
comparison. A high-frequency algorithm test was done by
comparing the CARIOCA buoy 1 h pCO2 record on the SS
during 2007–2010 with algorithm results using 1 h inputs
of SST, SSS, and calibrated fluorometer Chl concurrent
observations from the buoy. These data have been reported
by Thomas et al. [2012]. The time series and scatterplot of
observed versus algorithm pCO2 are shown in Figure 9.
The algorithm predictions track the observed pCO2 reason-
ably well with r2¼ 0.46, RMSE¼ 40.3 matm and mean
absolute percent difference (MAPD) of 8.8%. The observed
and algorithm values for 2007–2010 mean and standard
deviation are quite similar, 422.3 6 54.7 matm and
413.1 6 56.9 matm, respectively, which show a relatively
small bias (9 matm) and very similar variance.

4.2. Seasonal Surface Ocean pCO2, Alkalinity, DIC,
and Sea-Air Flux From Data and Algorithm

[38] Figure 10 shows seasonal maps of algorithm surface
ocean pCO2 adjusted for reference year 2004 and corre-
sponding seasonal maps of alkalinity and DIC. Figure 10
shows that the temporal and spatial variability of pCO2 is
quite different from region to region and that the seasonal
changes are not in sync among the five analyzed coastal
domains. This is also evident in the seasonal plots of data-
derived surface ocean pCO2 in Figure 5. The lowest values

(280–320 matm) occur mostly during winter (DJF) in the
MAB, SAB, and in the nearshore areas of the SS in spring
(MAM). Low values are also present in spring in the
GBþNS region. These low values are generally associated
with low SSTs (see Figure 2). The highest values (>480
matm) occur in the offshore region of the SS in autumn
(SON) and the nearshore areas of the SAB in summer
(JJA), the latter influenced by the discharge of carbon-rich
(primarily DOC) estuarine effluents [Alberts and Takacs,
1999; Cai, 2011] and marsh DIC export [Wang and Cai,
2004]. The surface ocean pCO2 in the MAB shows much
less variability alongshore than cross-shelf, except in the
southern region and outer shelf where Gulf Stream intru-
sions and shelf-slope fronts induce strong hydrographic and
biogeochemical horizontal gradients. DeGrandpre et al.
[2002], and references within, identified similar alongshore
homogeneity in connection with little alongshore variabili-
ty on midshelf hydrography, nutrients, surface-dissolved
oxygen, Chl concentrations, and primary production. The
high values in the offshore region of the SS in autumn are
associated with low drawdown by phytoplankton, as indi-
cated by the higher values of DIC, as shown in Figure 10
discussed later in this section, and confirmed by the work
of Craig et al. [2013] for this region. The GoM has highest
pCO2 (>400 matm) values in winter and fall when vertical
mixing is more vigorous and phytoplankton drawdown is
significantly reduced.

[39] The seasonal maps of alkalinity in Figure 10 follow
the seasonal surface salinity distribution in Figure 2 as al-
kalinity was derived as a linear function of salinity, albeit
with different coefficients for each region. There is a sharp
transition in alkalinity at Cape Hatteras. South of it, in the
SAB, alkalinity is highest in the middle and outer shelves
due to the influence of high-salinity Gulf Stream waters.
Alkalinity is highly reduced in the nearshore region under
the influence of low-salinity riverine waters. However, in
the very nearshore areas high alkalinity values were
observed due to significant export from the marsh areas
during the warm months [Cai et al., 1998]. North of Cape
Hatteras all regions have much lower alkalinity than the
middle and outer shelf regions of the SAB. The inner and
middle shelf regions of the MAB and southern GoM have
even lower alkalinity, especially during summer (JJA)
when surface salinity is at a minimum. This summer mini-
mum salinity follows the peak discharge of the major rivers
in spring with a delay of approximately 1–2 months [Whit-
ney, 2010]. However, the SSS minimum on the SS comes
in autumn (SON) with the peak St. Lawrence outflow.

[40] The Alk and salinity relationships generally fol-
lowed a single river-ocean mixing line in the SAB and
MAB regions, but a two-segment line in the northeastern
waters due to the strong alongshore current and influences
from the low alkalinity local rivers [Cai et al., 2010].

[41] The seasonal DIC maps in Figure 10 show highest
values in the GoM and offshore regions of the SS in
winter-spring, a likely result of vigorous vertical mixing.
Lowest DIC values occur in the MAB and southern GoM
in summer, influenced by the low-DIC riverine waters that
peak during spring, as well as low-DIC water of the Labra-
dor Coastal Current that flows through the region [Wang
et al., 2013]. The DIC seasonal variability is also highly
influenced by the drawdown of CO2 by the net community

Figure 4. Plot of goodness-of-fit statistics for all regional
MLRs with incremental addition of corresponding proxy
parameters. The x axis shows the RMSE normalized by the
maximum attained value among all MLRs, while the y axis
shows (1� r2). Thus, a perfect match between data and
MR values would be centered at the origin (0, 0).
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Figure 5. (top to bottom) scatterplots (left column) of observed (SOCAT) versus algorithm (equation
(1)) pCO2 (matm) for the five regions (black dots all months, green squares monthly ensemble averages).
The right column shows the mean seasonal plots of the ensemble averages for the equivalent regions.
There are no data available for the MAB and GBþNS for January. Only data bins with more than 6
months of coverage were used.
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production during spring-summer. In general, the SAB has
much less seasonal DIC and alkalinity variability than the
other regions to the north.

[42] The monthly and annual mean sea-air CO2 flux was
calculated using DpCO2 derived from both binned data and
algorithm (Table 2) and the two gas transfer parameteriza-
tions described in section 3.3. The estimates were based on
monthly wind climatology for 1999–2008 derived from sat-
ellite (Atlas CCMP) winds. The differences between the
two different parameterizations are relatively small ranging
from 6% to 17%, except for the GoM where the fluxes are
small causing much larger differences between the two
methods. For simplicity, we compare the flux estimates
between binned data and algorithm based on the Ho et al.
[2011] parameterization.

[43] There is a general agreement in sign and magnitude
between the data-derived and algorithm-derived estimates
for the MAB, SAB, and GBþNS (Table 2). The annual
mean sea-air CO2 flux in the GoM derived by both methods

range from þ0.02 6 0.12 to þ0.17 6 0.32 Tg C yr�1, or a
weak source to the atmosphere on average, but within the
range of the estimates given by Vandemark et al. [2011] for
the southern GoM (�0.16 to þ1.1 Tg C yr�1 when con-
verted from specific to upscaled total sea-air flux for the
entire GoM). The MAB, SAB, GBþNS, and SS are net
sinks ranging from �0.6 6 0.2 to �1.8 6 0.2 mol CO2 m�2

yr�1. These estimates from the binned data and algorithm
are in general agreement with previous studies (see Table
2) when the range of uncertainty and interannual variability
are taken into account. One exception is the SS where pre-
vious studies [Shadwick et al., 2010, 2011] indicate that the
SS is a source of CO2 to the atmosphere while this study
indicates the opposite. Since the algorithm seems to per-
form well in the SS when compared with the available
data, the reason(s) for the apparent discrepancy remains
elusive and highlights the fact that there are still large dif-
ferences in the sea-air flux estimates with different degrees
of uncertainty from region to region.

Figure 6. (a) Scatterplot of algorithm versus observed
surface ocean pCO2 based on observed values not used in
the algorithm development (bins with temporal coverage
less than 6 months). The r2, RMSE, and mean absolute per-
cent difference (MAPD) are shown in the legend. (b) Histo-
gram of residuals (observed minus algorithm). The red
dashed vertical lines represent the standard deviation (6�)
of the observed pCO2.

Figure 7. (a) Map showing the seven 2� � 2� boxes cov-
ering the entire Scotian Shelf (SS) region adapted from
Shadwick et al. [2010]. The contour line is the 200 m iso-
bath. The algorithm and in situ (SOCAT (not shown) and
UW observations from Dalhousie University cruises) mean
surface ocean pCO2 were obtained for each of the seven
boxes for evaluation purposes. (b) The scatterplot of algo-
rithm versus observed pCO2 for all seven boxes is shown
with corresponding statistics in the legend.
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[44] The combined uptake by the east coast continental
shelf based on both binned data and algorithm, and using
both gas transfer parameterizations, ranges from 3.6 to 4.3
Tg C yr�1.

4.3. Sensitivity Analysis of Parameters That Influence
the pCO2 Seasonal Variability

[45] Here we present a sensitivity analysis of the most in-
fluential parameters affecting the surface ocean pCO2 vari-

ability in the study region. The seasonal cycles of each
influential parameter are plotted in Figure 11 together with
the seasonal surface ocean pCO2 from the algorithm with
the seasonal mean removed. Inspection of Figure 11 shows
that the amplitude of SST and DIC contributions in the
MAB, GoM, GBþNS, and SS are similar but having oppo-
site phase. Seasonal variability of pCO2 (DIC) in these
regions is consistent with winter mixing enhancement and

Figure 8. (a) Time series of algorithm mean surface
ocean pCO2 (black lines) for boxes 1–4 shown in Figure
7a. The corresponding SOCAT (red dots) and Dalhousie
UW (blue dots) data are shown for comparison. The blue
lines are the atmospheric pCO2. See Figure 7b for statistical
evaluation. (b) Time series of algorithm mean surface
ocean pCO2 (black lines) for boxes 5–7 shown in Figure
7a. The corresponding SOCAT (red dots) and Dalhousie
UW (blue dots) data are shown for comparison. The blue
lines are the atmospheric pCO2. See Figure 7b for statistical
evaluation.

Figure 9. Time series of high-frequency (hourly) surface
ocean pCO2 measured (blue crosses) at the Carioca buoy
from 2007 to 2010, and corresponding algorithm prediction
(red crosses) using hourly values of SST, SSS, and cali-
brated fluorometer Chl as inputs (top). The scatterplot of
observed versus algorithm pCO2 is shown in the bottom.
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biological drawdown in spring-summer. In contrast, the
major contributing factor to the seasonal pCO2 variability
in the SAB is SST. Alkalinity influence is the third most
important and salinity relatively the least influential. How-

ever, salinity has an impact in the statistical improvement
of the pCO2 algorithm, most pronounced in the SAB, which
is a region where seasonal SSS variability is large (see
Figure 2), especially on the inner shelf.

Figure 10. Seasonal maps of algorithm pCO2, salinity-derived alkalinity from Cai et al. [2010] equa-
tions, and DIC derived from alkalinity and algorithm pCO2. The seasons are defined as Dec-Jan-Feb
(DJF), Mar-Apr-May (MAM), Jun-Jul-Aug (JJA), and Sep-Oct-Nov (SON).
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[46] The seasonal DIC variability averaged for all five
study regions, with the MLD superimposed, is shown in
Figure 12. The four study regions north of Cape Hatteras
(MAB, GoM, GBþNS, and SS) have distinct DIC seasonal
cycles with amplitudes of 100–120 mmol kg�1. Regionally
averaged winter MLDs range from 30 m in the MAB to
more than 100 m in the GoM. Deeper MLDs in winter/
autumn, resulting from wind and convective mixing, is the
major factor contributing to the elevated DIC concentra-
tions (2010–2080 mmol kg�1) shown during these seasons.
The shoaling of the MLDs in spring-summer, together with
the drawdown of CO2 by biology, are the major factors
driving the significant reduction in surface DIC. For
instance, in the MAB the DIC drops from 2020 mmol kg�1

in February-March to 1900 mmol kg�1 in June. In addition

to biology and deep mixing, DIC, and consequently the sur-
face ocean pCO2, is also affected by sea-air exchange. In
the GoM, for instance, there is a significant effect of the
sea-air exchange on DIC when the DpCO2 is high and the
mixed layer becomes very shallow (J. Salisbury, personal
communication, 2012). The amplitudes of the seasonal
MLD and DIC in the SAB are significantly less than in the
other regions, most probably due to the shallower depths
and much lower phytoplankton productivity.

4.4. Interannual Variability of Surface Ocean pCO2

and Sea-Air Flux

[47] The interannual variability of surface ocean pCO2

and sea-air CO2 flux were calculated using the algorithm
(equation (1)) with inputs from monthly satellite products

Figure 11. Sensitivity of pCO2 seasonal cycle to most influential parameters. Alkalinity was derived
using SSS from monthly WOA 2009 salinity data (D. Tomaso, personal communication, 2012), spatially
interpolated using Kriging, and Cai et al. [2010] equations. DIC was derived from algorithm pCO2, alka-
linity, WOA SSS, and MODIS SST. Refer to text for methodology to derive parameter sensitivity.
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(SST and Chl) for 2003–2010 and climatologic SSS. The
sea air flux was computed using monthly CCMP winds for
the same period. The results are shown in Figure 13 (pCO2

(left), sea-air flux (right)) and summarized in Table 3. Note
that the algorithm results in Table 2 were derived using
monthly satellite climatology of SST and Chl, and climato-
logic winds, while those in Table 3 are from monthly inter-
annual satellite products and winds. The GoM and SS have
the largest interannual variability in sea-air CO2 flux. The
flux in the SS is positive (source) in 2005 (þ0.15 Tg C
yr�1) and negative (weak sink) in 2006 (�0.02 Tg C yr�1),
while the largest flux (�1.55 Tg C yr�1) occurred in 2007.
These large differences in the SS annual fluxes are a result
of large interannual changes in the spring drawdown of sur-
face ocean pCO2 (see Figure 13). However, in the GoM the

large differences in annual flux (þ0.17 Tg C yr�1 in 2004
and �0.19 Tg C yr�1 in 2007) are a result of wind speed
variability as there are not significant interannual changes
in the surface ocean pCO2 seasonal cycle, as shown in
Figure 13.

[48] Averaged over the entire 8 years, the MAB,
GBþNS, and SAB are relatively the largest sinks of CO2 to
the atmosphere (�2.1, �1.0, and �0.9 Tg C yr�1, respec-
tively), while the GOM is a small source (þ0.01 Tg C
yr�1) and the SS a relatively small sink (�0.6 Tg C yr�1),
albeit with large changes from year to year. The east coast
uptake (mean over the 8 years) is �4.6 Tg C yr�1, which is
at the upper end of the estimates from the binned field
measurements with two different gas transfer parameteriza-
tions (�4.0 and �4.3 Tg C yr�1), and �3.6 and �4.0 Tg C

Figure 12. Regionally averaged seasonal DIC (black lines and circles) derived from TA (SSS) [Cai et
al., 2010], SST from MODIS, monthly SSS from WOA 2009 (D. Tomaso, personal communication,
2012) spatially interpolated using Kriging, and algorithm pCO2. The seasonal mixed layer depth (MLD)
is superposed for each region (red lines and circles). The red dashed lines represent the mean bottom
depth for each region and the thin black lines are the annual mean DIC for each region, with the GoM
and SAB having the highest values (2022 mmol kg�1) and the MAB the lowest (1968 mmol kg�1).
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yr�1 from the algorithm using monthly climatology inputs
(see Table 2). Table 3 shows that the lowest estimate occur
in 2006 (�3.4 Tg C yr�1) and the highest in 2007 (�5.4 Tg
C yr�1).

[49] The interannual variability in sea-air flux in all
regions is mostly due to changes in the surface ocean
pCO2, mainly in response to changes in solubility and bio-
logical drawdown due to variability in SST and phyto-
plankton production, respectively, and the wind-dependent
gas exchange at the sea-air interface, accounted for by the
gas transfer coefficient k660 (in cm h�1). From Table 1, we
see that the algorithm pCO2 sensitivity to the input parame-
ters varies significantly from region to region. In fact, the
coefficients of many parameters change sign on a regional
basis. So, in order to evaluate which parameters influenced

the resulting estimates of sea-air flux the most, one needs to
examine the yearly changes of these parameters and evalu-
ate how much influence they have on the pCO2. As an
example, there was a significant shift in the mean annual
sea-air flux in the SS from 2005 to 2007 (Table 3 and Fig-
ure 14). In 2005 the SS was a weak source of atmospheric
CO2 (þ0.15 Tg C yr�1), while in 2007 it shifted to a rela-
tively strong CO2 sink (�1.55 Tg C yr�1). This shift was
associated with lower SST (�0.8�C), higher log10[Chl]
(þ0.067), and higher k660 (þ2.19 cm hr�1) on average in
2007 compared to 2005. Using the coefficients for SS in
Table 1, 8.77 6 0.26 matm (�C)�1, �100.32 6 4.66 matm
(log10[Chl])�1, we get the following changes in pCO2 in
2007 compared to 2005: �7.1 6 0.2 matm from SST and
�6.7 6 0.3 matm from Chl, for a total decrease in surface

Figure 13. (left) Monthly surface ocean pCO2 derived from algorithm (black lines) and atmospheric
pCO2 from Grifton, NC located at 35.53�N and 77.38�W (superposed blue lines). (right) Sea-air CO2

flux derived from DpCO2, CCMP winds, and Ho et al. [2011] gas transfer parameterization.
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ocean pCO2 of �13.8 6 0.4 matm. Considering that this is a
regionally and annually averaged value, this is a significant
change in pCO2, which, combined with the increase in k660,

is the main reason leading to changes in sea-air flux.
[50] Time series (2003–2010) of annual mean sea-air

CO2 flux averaged for each of the five regions, each com-
bined with annual means of SST, log10[Chl], and k660, are
shown in Figure 14. We show log10[Chl] instead of abso-
lute Chl concentration because the log-transformed Chl is
the parameter used by the algorithm. Examination of each
of these time series reveals some interesting interannual
changes. The scale of variability for each variable changes
from region to region, and it is reflected by adopting differ-
ent vertical axis ranges for each region. Interestingly, 2006
is a year of transition for all regions north of Cape Hatteras
(MAB, GBþNS, GoM, and SS). In 2006, the highest SST
and Chl occur in the GoM and SS, followed by a decrease
in SST reaching a minimum in 2007, which, combined

with a peak in k660 resulted in the largest uptake of CO2 by
the ocean in these two regions. As a result, there was a tran-
sition in the sea-air flux in the SS from a very weak sink in
2006 (�0.02 Tg C yr�1) to a stronger sink in 2007 (�1.55
Tg C yr�1). There was an increase of SST from 2007 to
2010 that contributed to a reduction in the ocean uptake.
The sea-air flux interannual variability in the GBþNS,
MAB, and SAB was also largely driven by changes in SST,
with warmer years having reduced ocean uptake and colder
years showing an increase in uptake.

[51] The annual mean time series of sea-air flux for each
region (2003–2010), and the total for the entire east coast,
are shown in Figure 15. The GoM and SS regions were rel-
atively stronger sinks of CO2 to the atmosphere in 2007
(�0.19 and �1.55 Tg C yr�1, respectively). The annual
uptake of CO2 ranged from �0.51 to �1.12 Tg C yr�1 in
the SAB with a mean of �0.89 6 0.18 Tg C yr�1 for 2003–
2010. The equivalent values for the GBþNS were similar,

Figure 14. Mean annual sea-air CO2 flux (red lines, Tg C yr�1) combined with SST (�C), log10[Chl]
(blue lines) and k660 (cm h�1, blue lines) for all five regions.
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with a range of �0.73 to �1.20 Tg C yr�1 and an overall
mean of �1.00 6 0.18 Tg C yr�1. The MAB was the largest
sink with values ranging from �1.73 to �2.43 Tg C yr�1,
and an overall mean of �2.12 6 0.24 Tg C yr�1. The total
sea-air flux (sum of all five regions) ranged from �3.4 to
�5.4 Tg C yr�1, with the lowest uptake in 2006 and the
highest in 2007.

5. Summary and Future Work

[52] We reconstructed a monthly climatology of surface
ocean pCO2 for the North American east coast continental
shelf and developed regional algorithms to analyze the sea-
sonal and interannual variability of surface ocean pCO2

and sea-air CO2 flux. A sensitivity analysis of parameters
that influence the surface ocean pCO2 showed that changes
in DIC and SST are the main drivers for the pCO2 seasonal
cycle. Vertical mixing, mixing of low-salinity waters with
shelf water, and biological drawdown are highly influential
in the DIC variability. Much larger seasonal cycle ampli-
tudes of DIC occur in regions north of Cape Hatteras than
south of it. The annual sea-air CO2 flux for the entire East
Coast derived from the algorithm ranges from �3.4 Tg C
yr�1 (2006) to �5.4 Tg C yr�1 (2007) during the analyzed
period (2003–2010). In general, estimates from the binned
data and algorithm are in agreement with previous studies
when the range of uncertainty and interannual variability
are taken into account.

[53] Uncertainties in the estimates of sea-air flux can be
reduced by filling the spatial and temporal gaps in the exist-

ing surface ocean pCO2 inventory for the U.S. east coast.
The limitations of spatial and temporal surface ocean pCO2

data coverage present a challenge in validating algorithms
and biogeochemical model pCO2 and sea-air flux estimates.
Improvements can only be obtained by continuous monitor-
ing of pCO2 and other carbon cycle related variables in the
nearshore and shelf regions of the U.S. east coast. As
shown in Figure 3, all regions have major spatial and tem-
poral gaps in the data coverage.

[54] In this study, we used a multiple regression
approach to convert regional satellite observed quantities
(SST and Chl) into pCO2. However, the relationship
pCO2¼ f (SST, Chl, SSS, time) is empirical and does not
represent a unique solution as pCO2 depends on factors
other than local SST and Chl, for instance. Surface waters
with identical SST and Chl can possibly have different
pCO2 levels. However, there have been studies that apply
the technique of neural networks for mapping in situ pCO2

data in the open ocean [Friedrich and Oschlies, 2009;
Lefèvre et al., 2005; Telszewski et al., 2009]. The advant-
age of the neural network approach is that it can recognize
and exploit relationships in the data which are not prede-
fined (as in regression techniques) and need to be expressi-
ble by an equation. This makes neural networks
particularly suited to mapping relationships that are nonlin-
ear and empirical, provided sufficient data are available to
‘‘train’’ the network. This technique looks promising for
mapping the surface ocean pCO2 in other coastal regions as
well.

[55] Hales et al. [2012] presented a method for predict-
ing coastal surface-water pCO2 from remote sensing data,
based on self-organizing maps (SOMs) and a nonlinear
semiempirical model of surface water carbonate chemistry,
a method potentially applicable to the coastal regions in
this study. The SOM approach was used to objectively map
the subregions, while an entirely different approach was
used to develop the pCO2 algorithm within the SOM-
defined subregions. The model used simple empirical rela-
tionships between carbonate chemistry (DIC and Alk) and
satellite data (SST and Chl). Surface water pCO2 was cal-
culated from the empirically predicted DIC and Alk. This
directly incorporated the inherent nonlinearities of the car-
bonate system, in a completely mechanistic manner.

Appendix A: Additional Sources of Surface Ocean
pCO2 Not Included in the SOCAT Data

A1. South Atlantic Bight

[56] Underway surface ocean pCO2 data from the SAB
were collected by Dr. Wei-Jun Cai (a coauthor in this
study) and coworkers at the Department of Marine Scien-
ces, University of Georgia. A total of 65,454 underway sur-
face ocean pCO2 records were processed for this study
from six cruises along the SAB continental shelf : 5–16 Jan-
uary 2005, 19–30 March 2005, 27 July to 5 August 2005,
7–17 October 2005, 16–21 December 2005, and 17–27
May 2006. The SOCAT data set includes the 2005 cruises
but not those undertaken in 2006, which were added to our
analysis to include all cruises. In all of the sampling cruises
except for the one in December 2005, the research vessel
transected the whole SAB from coastline to about 500 m
water depth. The survey focused on five cross-shelf

Figure 15. Time series of algorithm annual sea-air CO2

flux for all five individual regions and for the entire east
coast.
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transects that are named E-, D-, C-, B-, and A-transect,
respectively, from north to south. In December 2005, the
ship transected the whole SAB, but did not cover D- and B-
transects and did not go beyond the 200 m isobaths due to
limited ship time. Surface water and atmospheric xCO2

were measured underway during all cruises. Sea surface
temperature (SST) and salinity were recorded continuously
with an onboard SeaBird flow through thermosalinograph.
Sea level pressure was recorded using an onboard R.M.
Young barometric pressure sensor. Surface water xCO2

was measured using a LI-COR 7000 infrared gas analyzer
coupled to a gas-water equilibrator. Details of the method-
ology and accuracy of instruments used are given in Jiang
et al. [2008]. Figure A1 shows the data distribution map.

A2. Gulf of Maine

[57] Underway surface ocean pCO2 data from monthly
cruises in the southern Gulf of Maine were obtained from
the University of New Hampshire (UNH) and integrated
with the SOCAT data base. Underway data are measured
continuously from pumped surface water for physical,
chemical, biological and biooptical properties. The data
used in this study consisted of 309,665 surface observations
spanning the period of 2004–2010. These data originate
from the UNH Coastal Ocean Observing Center’s Coastal
Carbon Group, which is an interdisciplinary research team
within UNH-EOS engaged in efforts to observe and model
how the Earth’s pool of carbon moves between the land,
ocean, and atmosphere with a particular focus on how this
carbon cycling occurs in coastal regions, such as the Gulf
of Maine. Dr. Joe Salisbury, a coauthor in this study, is a
member of the UNH Coastal Carbon Group. The methodol-
ogy and instrumentation details are given in Vandemark et
al. [2011]. The precision of the fCO2 measurements was
63 matm. Figure A2 shows the data distribution map. All

underway cruise tracks are in the GoM, except for a single
cruise track from Woods Hole to New York City.

A3. Scotian Shelf

[58] Underway (UW) surface ocean pCO2 data from
transects across the Scotian Shelf, and high-frequency
pCO2, SST, SSS, and calibrated fluorometer Chl data from
the CARIOCA buoy were obtained from Dalhousie Univer-
sity [Shadwick et al., 2010, 2011]. These data were used to
evaluate the algorithm performance on the Scotian Shelf.
Hourly, autonomous observations of surface water pCO2

(�atm), chlorophyll-a fluorescence (FChl), and SST, were
made using a CARIOCA buoy moored roughly 30 km off-
shore from Halifax, at 44.3�N and 63.3�W, between April
2007 and June 2008. Hourly CARIOCA data were
uploaded and transmitted daily via the ARGOS satellite
system. The pCO2 measurements were made by an auto-
mated spectrophotometric technique. A Sea-Bird (SBE 41)
conductivity and temperature sensor was used to measure
temperature (�C) and to determine salinity; chlorophyll-a
fluorescence (�g L�1) was determined by a WET Labs
miniature fluorometer (WETstar). Nonphotochemical
effects that are related to the intensity of the incoming solar
radiation may decrease FChl up to 80% during the day. This
effect can be avoided by using night-time data which, to a
large extent, are free of the effects of nonphotochemical
quenching, for fluorometer calibration. Night-time data
were taken as a mean FChl between 03:00 and 06:00 UTC
(or 11:00 and 02:00 LT); data points were temporally
interpolated to match discrete chlorophyll-a measurements
(Chl-a in mg m�3) from monthly or twice monthly occupa-
tions at the mooring site. Chl-a concentration was deter-
mined fluorometrically in a Turner Designs fluorometer
using the acid ratio technique for seawater samples col-
lected at 3, 5, or 10 m depth. A linear regression (r2¼ 0.76,
N¼ 29, p < 0.001) was used to determine the relationship
between the FChl and Chl-a, and applied to the CARIOCA
fluorescence-derived Chl-a time-series (ChlF in mg m�3).
Shadwick et al. [2010] performed a validation of satellite

Figure A1. Distribution of underway pCO2 tracks in the
SAB.

Figure A2. Map showing the underway pCO2 tracks in
the GoM and a single cruise track from Woods Hole to
New York City.
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monthly chlorophyll data by regressing it against the
(night-time calibrated), monthly mean, CARIOCA ChlF
time series (r2¼ 0.68, N¼ 14, p< 0.002).

[59] Measurements of pCO2 UW were made by a contin-
uous flow equilibration system in: October 2006, April,
August, and October 2007, and April and October, 2008 on
board the CCGS Hudson. The UW measurements (see dis-
tribution map in Figure 7a) were obtained on monitoring
cruises on the Scotian Shelf (see Shadwick et al. [2011] for
details of the field program). Measurements of pCO2 UW
were made by a nondispersive, infrared spectrometer
(LiCor, LI-7000). The system was located in the aft-
laboratory of the ship and the intake depth was approxi-
mately 3 m below the water surface. Measurements were
made every minute and used to compute hourly averages.
The system was calibrated daily with both a CO2-free refer-
ence gas (N2) and a CO2 calibration gas (328.99 ppm) pro-
vided by the U.S. National Oceanic and Atmospheric
Administration (NOAA). The data were corrected to in situ
water temperature and to 100% humidity and had an asso-
ciated uncertainty of less than 1 �atm.
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