Juveniles

Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations.

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Ocean acidification conditions did not affect survival, body size, or developmental speed of a copepod species during any of its life stages. Egg production and hatching rates also did not change among generations of females exposed to ocean acidification conditions. Thus, this copepod appears more tolerant to ocean acidification than ...

Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Under extreme ocean acidification conditions (pH 6.8), the egg production rates of copepods decreased significantly. For two species of sea urchins, fertilization rate of eggs decreased with increasing ocean acidification conditions. Furthermore, the size of urchin larvae decreased and deformities increased. These effects on marine life could lead to changes ...

Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: Mortality, shell degradation, and shell growth.

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

When pre-winter juvenile pteropods were cultured at a range of warmer temperatures and ocean acidification levels for 29 days, temperature was the overriding cause of increased mortality. However, ocean acidification was the main factor in reducing shell diameter by 10-12 percent and increasing shell degradation by 41 percent. This study ...

Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Juvenile oysters living in acidified seawater had higher mortality rates and less growth of shell and soft-body tissues. They also had higher metabolic rates, likely because of the higher energy cost of maintaining their body chemistry. The high-CO2 conditions also reduced the hardness and fracture toughness of the shells. (Laboratory ...

Environmental salinity modulates the effects of elevated CO2 levels on juvenile hardshell clams, Mercenaria mercenaria

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

For juvenile hard-shell clams, ocean acidification alone or in combination with low salinity reduced the hardness and fracture toughness of their shells. This may reduce protection against predators. Salinity should be taken into account when predicting the effects of ocean acidification on estuarine bivalves. (Laboratory study)

Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica.

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

When juvenile oysters were exposed to ocean acidification and/or low salinity, they had greater mortality, less energy stored in their tissues, and loss of soft tissue indicating energy deficiency. Ocean acidification and low salinity also reduced the hardness and fracture resistance of their shells. (Laboratory study)

Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Common sunstar larvae and juveniles in ocean acidification conditions grew faster without apparent effects on survival or body structure. Unlike the larvae of some other sea star species that feed on plankton, larval common sunstars rely on nutrition provided in their egg. This difference in life history may enable some ...

Post-larval development of two intertidal barnacles at elevated CO2 and temperature

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Post-larvae of an intertidal barnacle (Elminius modestus) grew more slowly under ocean acidification conditions, but there were no impacts on its shell calcium content and survival by either ocean acidification or warmer temperature. were observed in high CO2 but there were no impacts on shell calcium content and survival by ...

Relative influences of ocean acidification and temperature on intertidal barnacle post-larvae at the northern edge of their geographic distribution

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Ocean acidification (pH 7.7) impaired growth and development of an intertidal barnacle (Semibalanus balanoides), but warmer temperature (+4 °C) did not. The mineral composition of the shells did not change with either ocean acidification or warmer temperature. The combination of reduced growth and maintained mineral content suggests that the barnacles ...

Pages