The effect of carbon dioxide on growth of juvenile Atlantic cod Gadus morhua L.

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Juvenile Atlantic cod exposed to ocean acidification conditions for 55 days had reduced weight gain, growth rate, and condition. Growth trajectories of those living in medium and high acidification levels were 2.5 and 7.5 times lower than that of those in the low acidification level. The findings suggest that Atlantic ...

Proteomic response of marine invertebrate larvae to ocean acidification and hypoxia during metamorphosis and calcification

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

This study investigated the response of metamorphosing larvae of a tubeworm species (Hydroides elegans) to two climate change stressors—ocean acidification (pH 7.6) and low oxygen (hypoxia)—and to both combined. (Laboratory study)

Does encapsulation protect embryos from the effects of ocean acidification? The example of Crepidula fornicata.

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Unlike most marine invertebrates, the common slipper shell broods its embryos in capsules. This study found that the capsules do not protect the embryos from ocean acidification. When brooded under ocean acidification conditions, larvae had shells that were 6 percent shorter, and the percentage of larvae with abnormalities was 1.5- ...

Response of eelgrass Zostera marina to CO2 enrichment: Possible impacts of climate change and potential for remediation of coastal habitats

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

When eelgrass was grown for a year under ocean acidification conditions in outdoor aquaria, they had greater reproductive output, below-ground biomass, and proliferation of new shoots. The findings suggest that ocean acidification will increase the productivity of seagrass meadows. (Laboratory study)

Extracellular acid–base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Experiments with deep-sea and shallow-water crab species from the U.S. west coast indicated that deep-sea animals, which are adapted to a stable environment and have reduced metabolic rates, lack the short-term acid–base regulatory capacity to cope with the sudden, large increases in carbon dioxide that would occur if carbon dioxide ...

Tolerance of juvenile barnacles (Amphibalanus improvisus) to warming and elevated pCO2

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

The Kiel Fjord (Baltic Sea) has large natural variations in carbon dioxide levels. When barnacles from the fjord were raised for 8-12 weeks in warmer seawater under ocean acidification conditions, their growth and condition did not change significantly. Warming increased the shell strength, but ocean acidification conditions had only weak ...

Reduced calcification of marine plankton in response to increased atmospheric CO2

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica, produced less calcite under ocean acidification conditions. They also had more deformities and higher rates of incomplete development. The findings suggest that ocean acidification could slow down the production of calcium carbonate in the ocean. (Laboratory study) ...

Pages