Ultraviolet radiation modulates the physiological responses of the calcified rhodophyte Corallina officinalis to elevated CO2

  • Posted on: Wed, 03/30/2016 - 15:58
  • By: petert

Ocean acidification reduces the concentration of carbonate ions and increases those of bicarbonate ions in seawater compared with the present oceanic conditions. This altered composition of inorganic carbon species may, by interacting with ultraviolet radiation (UVR), affect the physiology of macroalgal species. However, very little is known about how calcareous ...

Coastal ocean acidification: The other eutrophication problem

  • Posted on: Wed, 03/30/2016 - 15:56
  • By: petert

Increased nutrient loading into estuaries causes the accumulation of algal biomass, and microbial degradation of this organic matter decreases oxygen levels and contributes towards hypoxia. A second, often overlooked consequence of microbial degradation of organic matter is the production of carbon dioxide (CO2) and a lowering of seawater pH. To ...

Saturation-state sensitivity of marine bivalve larvae to ocean acidification

  • Posted on: Wed, 03/30/2016 - 15:50
  • By: petert

Ocean acidification results in co-varying inorganic carbon system variables. Of these, an explicit focus on pH and organismal acid–base regulation has failed to distinguish the mechanism of failure in highly sensitive bivalve larvae. With unique chemical manipulations of seawater we show definitively that larval shell development and growth are dependent ...

Carbonate Mineral Saturation State as the Recruitment Cue for Settling Bivalves in Marine Muds

  • Posted on: Wed, 03/30/2016 - 15:25
  • By: petert

After a pelagic larval phase, infaunal bivalves undergo metamorphosis and transition to the underlying sediments to begin the benthic stage of their life history, where they explore and then either accept or reject sediments. Although the settlement cues used by juvenile infaunal bivalves are poorly understood, here we provide evidence ...

Egg and early larval stages of Baltic cod, Gadus morhua, are robust to high levels of ocean acidification

  • Posted on: Wed, 03/30/2016 - 15:23
  • By: petert

The accumulation of carbon dioxide in the atmosphere will lower the pH in ocean waters, a process termed ocean acidification (OA). Despite its potentially detrimental effects on calcifying organisms, experimental studies on the possible impacts on fish remain scarce. While adults will most likely remain relatively unaffected by changes in ...

Influence of sediment acidification and water flow on sediment acceptance and dispersal of juvenile soft-shell clams (Mya arenara L.)

  • Posted on: Wed, 03/30/2016 - 14:32
  • By: petert

Although ocean acidification is expected to reduce carbonate saturation and yield negative impacts on open-ocean calcifying organisms in the near future, acidification in coastal ecosystems may already be affecting these organisms. Few studies have addressed the effects of sedimentary saturation state on benthic invertebrates. Here, we investigate whether sedimentary aragonite ...

Impact of CO2-induced seawater acidification on the burrowing activity of Nereis virens and sediment nutrient flux

  • Posted on: Wed, 03/30/2016 - 14:25
  • By: petert

A mesocosm experiment was conducted to quantify the effects of medium term (5 wk) exposure to acidified seawater on the structure of Nereis virens (Polychaeta) burrows and sediment nutrient fluxes. Worms were exposed to seawater acidified to a pH of 7.3, 6.5 or 5.6 using carbon dioxide (CO2) gas. These treatments mimicked ...

Early Exposure of Bay Scallops (Argopecten irradians) to High CO2 Causes a Decrease in Larval Shell Growth

  • Posted on: Wed, 03/30/2016 - 14:00
  • By: petert

Ocean acidification, characterized by elevated pCO2 and the associated decreases in seawater pH and calcium carbonate saturation state (Ω), has a variable impact on the growth and survival of marine invertebrates. Larval stages are thought to be particularly vulnerable to environmental stressors, and negative impacts of ocean acidification have been seen ...

Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish

  • Posted on: Wed, 03/30/2016 - 12:57
  • By: petert

 Experimental assessments of species vulnerabilities to ocean acidification are rapidly increasing in number, yet the potential for short- and long-term adaptation to high CO2 by contemporary marine organisms remains poorly understood. We used a novel experimental approach that combined bi-weekly sampling of a wild, spawning fish population (Atlantic silverside Menidia menidia) with ...

Effects of ocean acidification over the life history of the barnacle Amphibalanus amphitrite

  • Posted on: Wed, 03/30/2016 - 12:38
  • By: petert

Increased levels of atmospheric CO2 are anticipated to cause decreased seawater pH. Despite the fact that calcified marine invertebrates are particularly susceptible to acidification, barnacles have received little attention. We examined larval condition, cyprid size, cyprid attachment and metamorphosis, juvenile to adult growth, shell calcium carbonate content, and shell resistance to ...

Pages