Reference Library: All References

Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shells

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Ocean acidification increased the rate at which sponges bored into scallop shells. At pH 7.8, sponges bored twice the number of papillar holes and removed two times more shell weight than at pH 8.1. Greater erosion caused by the lower pH weakened the scallop shells. A warmer water temperature had ...

Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Common sunstar larvae and juveniles in ocean acidification conditions grew faster without apparent effects on survival or body structure. Unlike the larvae of some other sea star species that feed on plankton, larval common sunstars rely on nutrition provided in their egg. This difference in life history may enable some ...

Effects of CO2 enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii

  • Posted on: Wed, 03/30/2016 - 16:06
  • By: petert

Seagrass ecosystems are expected to benefit from the global increase in CO 2 in the ocean because the photosynthetic rate of these plants may be Ci-limited at the current CO 2 level. As well, it is expected that lower external pH will facilitate the nitrate uptake of seagrasses if nitrate is cotransported with H+ across ...

Deformities in larvae and juvenile European lobster (Homarus gammarus) exposed to lower pH at two different temperatures

  • Posted on: Wed, 03/30/2016 - 16:03
  • By: petert

The ongoing warming and acidification of the world's oceans are expected to influence the marine ecosystems, including benthic marine resources. Ocean acidification may especially have an impact on calcifying organisms, and the European lobster (Homarus gammarus) is among those species at risk. A project was initiated in 2011 aiming to ...

History of Seawater Carbonate Chemistry, Atmospheric CO2, and Ocean Acidification

  • Posted on: Wed, 03/30/2016 - 16:00
  • By: petert

Humans are continuing to add vast amounts of carbon dioxide (CO2) to the atmosphere through fossil fuel burning and other activities. A large fraction of the CO2 is taken up by the oceans in a process that lowers ocean pH and carbonate mineral saturation state. This effect has potentially serious consequences ...

Ultraviolet radiation modulates the physiological responses of the calcified rhodophyte Corallina officinalis to elevated CO2

  • Posted on: Wed, 03/30/2016 - 15:58
  • By: petert

Ocean acidification reduces the concentration of carbonate ions and increases those of bicarbonate ions in seawater compared with the present oceanic conditions. This altered composition of inorganic carbon species may, by interacting with ultraviolet radiation (UVR), affect the physiology of macroalgal species. However, very little is known about how calcareous ...

Coastal ocean acidification: The other eutrophication problem

  • Posted on: Wed, 03/30/2016 - 15:56
  • By: petert

Increased nutrient loading into estuaries causes the accumulation of algal biomass, and microbial degradation of this organic matter decreases oxygen levels and contributes towards hypoxia. A second, often overlooked consequence of microbial degradation of organic matter is the production of carbon dioxide (CO2) and a lowering of seawater pH. To ...

Ocean Acidification in the Coastal Zone from and Organism's Perspective: Multipe System Parameters, Frequency Domains, and Habitats

  • Posted on: Wed, 03/30/2016 - 15:53
  • By: petert

Multiple natural and anthropogenic processes alter the carbonate chemistry of the coastal zone in ways that either exacerbate or mitigate ocean acidification effects. Freshwater inputs and multiple acid-base reactions change carbonate chemistry conditions, sometimes synergistically. The shallow nature of these systems results in strong benthic-pelagic coupling, and marine invertebrates at ...

Saturation-state sensitivity of marine bivalve larvae to ocean acidification

  • Posted on: Wed, 03/30/2016 - 15:50
  • By: petert

Ocean acidification results in co-varying inorganic carbon system variables. Of these, an explicit focus on pH and organismal acid–base regulation has failed to distinguish the mechanism of failure in highly sensitive bivalve larvae. With unique chemical manipulations of seawater we show definitively that larval shell development and growth are dependent ...

Pages