Reference Library: Global

The growing human footprint on coastal and open-ocean biogeochemistry

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Climate change, rising atmospheric carbon dioxide, excess nutrient inputs, and pollution in its many forms are fundamentally altering the chemistry of the ocean, often on a global scale and, in some cases, at rates greatly exceeding those in the historical and recent geological record. Major observed trends include a shift ...

Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms

  • Posted on: Wed, 03/30/2016 - 15:33
  • By: petert

Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms—such as corals and some plankton—will have difficulty ...

Detecting regional anthropogenic trends in ocean acidification against natural variability

  • Posted on: Wed, 03/30/2016 - 15:18
  • By: petert

Since the beginning of the Industrial Revolution humans have released ~500 billion metric tons of carbon to the atmosphere through fossil-fuel burning, cement production and land-use changes. About 30% has been taken up by the oceans. The oceanic uptake of carbon dioxide leads to changes in marine carbonate chemistry resulting in a ...

Ocean Acidification 2.0: Managing our Changing Coastal Ocean Chemistry

  • Posted on: Wed, 03/30/2016 - 13:47
  • By: petert

Ocean acidification (OA) is rapidly emerging as a significant problem for organisms, ecosystems, and human societies. Globally, addressing OA and its impacts requires international agreements to reduce rising atmospheric carbon dioxide concentrations. However, the complex suite of drivers of changing carbonate chemistry in coastal environments also requires regional policy analysis, ...

Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms

  • Posted on: Wed, 03/30/2016 - 12:01
  • By: petert

Ocean acidification is a pervasive stressor that could affect many marine organisms and cause profound ecological shifts. A variety of biological responses to ocean acidification have been measured across a range of taxa, but this information exists as case studies and has not been synthesized into meaningful comparisons amongst response ...

Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming

  • Posted on: Tue, 03/29/2016 - 18:06
  • By: petert

Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is ...

Impacts of ocean acidification on marine fauna and ecosystem processes

  • Posted on: Tue, 03/29/2016 - 16:02
  • By: petert

Oceanic uptake of anthropogenic carbon dioxide (CO2) is altering the seawater chemistry of the world’s oceans with consequences for marine biota. Elevated partial pressure of CO2 (pCO2) is causing the calcium carbonate saturation horizon to shoal in many regions, particularly in high latitudes and regions that intersect with pronounced hypoxic ...

Climate Change Impacts on Marine Ecosystems

  • Posted on: Tue, 03/29/2016 - 15:57
  • By: petert

In marine ecosystems, rising atmospheric CO2 and climate change are associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification, with potentially wide-ranging biological effects. Population-level shifts are occurring because of physiological intolerance to new environments, altered dispersal patterns, and changes in species interactions. Together with ...

Ocean Acidification: The Other CO2 Problem

  • Posted on: Tue, 03/29/2016 - 14:50
  • By: petert

Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters ...

Pages