The direct effects of increasing CO2 and temperature on non-calcifying organisms: Increasing the potential for phase shifts in kelp forests

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Increased CO2 and temperature acted together to increase the growth of algal turfs, which produced twice as much biomass and covered four times as much space. Experimental removal of algal turfs led to greater establishment of young kelp. The findings suggest that ocean acidification and warming could potentially cause a ...

Reduced pH sea water disrupts chemo-responsive behaviour in an intertidal crustacean

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Ocean acidification conditions interfered with the chemoreception, or "smelling", that hermit crabs use to find shells and prey. The hermit crabs moved less, had lower flicking rates of their antennae (a ‘sniffing’ behavior in decapods), and were less successful in locating the odor source. (Laboratory study)

Reduced sea water pH disrupts resource assessment and decision making in the hermit crab Pagurus bernhardus

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Hermit crabs living in highly acidified seawater (pH 6.8) were less likely to leave a suboptimal shell in favor of an optimal shell. Those that did change shells took longer to do so. Crabs in acidified water also moved less and had lower flicking rates of their antennae (a ‘sniffing’ ...

Vulnerability of early life stage Northwest Atlantic forage fish to ocean acidification and low oxygen

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

For three ecologically important estuarine fish species—inland silverside, Atlantic silverside, and sheepshead minnow—the early life stages were more sensitive to low oxygen than they were to low pH. The combination of low oxygen and low pH had the biggest effect. The results suggest that ocean acidification and hypoxia may reduce ...

Environmental salinity modulates the effects of elevated CO2 levels on juvenile hardshell clams, Mercenaria mercenaria

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

For juvenile hard-shell clams, ocean acidification alone or in combination with low salinity reduced the hardness and fracture toughness of their shells. This may reduce protection against predators. Salinity should be taken into account when predicting the effects of ocean acidification on estuarine bivalves. (Laboratory study)

Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica.

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

When juvenile oysters were exposed to ocean acidification and/or low salinity, they had greater mortality, less energy stored in their tissues, and loss of soft tissue indicating energy deficiency. Ocean acidification and low salinity also reduced the hardness and fracture resistance of their shells. (Laboratory study)

Impact of exposure to elevated pCO2 on the physiology and behaviour of an important ecosystem engineer, the burrowing shrimp Upogebia deltaura

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

A species of burrowing shrimp was able to tolerate ocean acidification conditions (pH 7.64) for 35 days. At a lower pH of 7.35, individuals experienced extracellular acidosis, suggesting they had little or no buffering capacity, although there was no evidence of negative impacts on metabolism, osmotic regulation, shell mineralogy, growth, ...

Pages