Does encapsulation protect embryos from the effects of ocean acidification? The example of Crepidula fornicata.

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Unlike most marine invertebrates, the common slipper shell broods its embryos in capsules. This study found that the capsules do not protect the embryos from ocean acidification. When brooded under ocean acidification conditions, larvae had shells that were 6 percent shorter, and the percentage of larvae with abnormalities was 1.5- ...

Response of eelgrass Zostera marina to CO2 enrichment: Possible impacts of climate change and potential for remediation of coastal habitats

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

When eelgrass was grown for a year under ocean acidification conditions in outdoor aquaria, they had greater reproductive output, below-ground biomass, and proliferation of new shoots. The findings suggest that ocean acidification will increase the productivity of seagrass meadows. (Laboratory study)

Multigenerational exposure to ocean acidification during food limitation reveals consequences for copepod scope for growth and vital rates

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

The copepod Calanus finmarchicus had reduced growth, development, and fecundity when exposed to ocean acidification conditions. However, offspring in the next generation did not have delayed development, suggesting that the species may have an ability to adapt to ocean acidification. The results also suggest that in a more acidified ocean ...

Effects of elevated temperature and carbon dioxide on the growth and survival of larvae and juveniles of three species of northwest Atlantic bivalves

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Ocean acidification conditions and warmer temperatures reduced the survival, development, growth, and lipid synthesis of hard clam and bay scallop larvae. During the juvenile life stages, ocean acidification negatively affected juvenile eastern oysters and bay scallops, but not hard clams. Larvae were substantially more vulnerable to ocean acidication than juveniles ...

An investigation of the calcification response of the scleractinian coral Astrangia poculata to elevated pCO2 and the effects of nutrients, zooxanthellae, and gende

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Corals collected in Woods Hole, Massachusetts, exhibited a complex set of responses when exposed to ocean acidification conditions, different nutrient levels, and two different temperatures. For example, female corals were more sensitive than males to elevated CO2 levels. Considering gender and spawning may be important when considering how populations of ...

Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations.

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Ocean acidification conditions did not affect survival, body size, or developmental speed of a copepod species during any of its life stages. Egg production and hatching rates also did not change among generations of females exposed to ocean acidification conditions. Thus, this copepod appears more tolerant to ocean acidification than ...

Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea)

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Reproduction and larval development of two copepod species were sensitive to extreme ocean acidification conditions. The hatching rate tended to decrease, and mortality rate of young copepods tended to increase. (Laboratory study)

Pages