Future oceanic warming and acidification alter immune response and disease status in a commercial shellfish species, Mytilus edulis L.

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Ocean acidification and/or warmer temperatures may affect immune response, parasite abundance and diversity, and bacterial infection of blue mussels. (Laboratory study)

Interactive effects of elevated temperature and CO2 levels on metabolism and oxidative stress in two common marine bivalves (Crassostrea virginica and Mercenaria mercenaria)

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Hard shell clams and eastern oysters exposed to moderate warming and ocean acidification conditions showed no sign of persistent oxidative stress. This indicates that long-term exposure to moderately elevated CO2 and temperature minimally affects the cellular redox status in these bivalve species and that the earlier observed negative physiological effects ...

Combined effects of CO2, temperature, irradiance, and time on the physiological performance of Chondrus crispus (Rhodophyta)

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Growth rate and biomass of a seaweed (the red alga Chrondrus crispus) increased only when ocean acidification was accompanied by warmer temperatures. Photosynthesis was reduced under ocean acidification conditions. (Laboratory study)

Impact of ocean acidification on escape performance of the king scallop, Pectan maximus from Norway

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

King scallops in Norway clapped their shells (an escape response) with less force after being exposed to ocean acidification conditions for at least 30 days. The number of claps was unchanged, however. Ocean acidification also narrows the thermal tolerance range of scallops, resulting in elevated vulnerability to temperature extremes. These ...

Effects of elevated temperature and carbon dioxide on the growth and survival of larvae and juveniles of three species of northwest Atlantic bivalves

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Ocean acidification conditions and warmer temperatures reduced the survival, development, growth, and lipid synthesis of hard clam and bay scallop larvae. During the juvenile life stages, ocean acidification negatively affected juvenile eastern oysters and bay scallops, but not hard clams. Larvae were substantially more vulnerable to ocean acidication than juveniles ...

Aerobic scope fails to explain the detrimental effects on growth resulting from warming and elevated CO2 in Atlantic halibut

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Aerobic scope and cardiac performance of Atlantic halibut increased following 14–16 weeks exposure to elevated temperatures and even more so in combination with CO2-acidified seawater. However, the increase does not translate into improved growth. Instead, long-term exposure to CO2-acidified seawater reduces growth at temperatures that are frequently encountered by this ...

Pages