Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: Mortality, shell degradation, and shell growth.

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

When pre-winter juvenile pteropods were cultured at a range of warmer temperatures and ocean acidification levels for 29 days, temperature was the overriding cause of increased mortality. However, ocean acidification was the main factor in reducing shell diameter by 10-12 percent and increasing shell degradation by 41 percent. This study ...

Seasonal and species-specific response of five brown macroalgae to high atmospheric CO2

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Four species of intertidal brown seaweeds increased their uptake of carbon dioxide (CO2) as ambient CO2 concentration increased, while one other species did not. The amount of increased CO2 uptake changed seasonally with temperature, and for one species the results indicated that future impacts of increased CO2 would be greatest ...

The direct effects of increasing CO2 and temperature on non-calcifying organisms: Increasing the potential for phase shifts in kelp forests

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Increased CO2 and temperature acted together to increase the growth of algal turfs, which produced twice as much biomass and covered four times as much space. Experimental removal of algal turfs led to greater establishment of young kelp. The findings suggest that ocean acidification and warming could potentially cause a ...

Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shells

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Ocean acidification increased the rate at which sponges bored into scallop shells. At pH 7.8, sponges bored twice the number of papillar holes and removed two times more shell weight than at pH 8.1. Greater erosion caused by the lower pH weakened the scallop shells. A warmer water temperature had ...

Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

This field study in Papua New Guinea examined the effects of natural carbon dioxide seeps on coral reef ecosystems. At reduced pH, coral diversity was lower, population replenishment and abundance of some corals decreased, and interactions among species changed. Reef development ceased below pH 7.7. Ocean acidification, together with warmer ...

Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate.

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

In ocean acidification conditions (pH 7.7) embryos of an intertidal barnacle developed more slowly. Survival of adult barnacles dropped by 22 percent, and the mineral structure of adult shells changed. (Laboratory study)

Post-larval development of two intertidal barnacles at elevated CO2 and temperature

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Post-larvae of an intertidal barnacle (Elminius modestus) grew more slowly under ocean acidification conditions, but there were no impacts on its shell calcium content and survival by either ocean acidification or warmer temperature. were observed in high CO2 but there were no impacts on shell calcium content and survival by ...

Relative influences of ocean acidification and temperature on intertidal barnacle post-larvae at the northern edge of their geographic distribution

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Ocean acidification (pH 7.7) impaired growth and development of an intertidal barnacle (Semibalanus balanoides), but warmer temperature (+4 °C) did not. The mineral composition of the shells did not change with either ocean acidification or warmer temperature. The combination of reduced growth and maintained mineral content suggests that the barnacles ...

Pages